8 research outputs found

    A Transmit-Receive Parameter Separable Electromagnetic Channel Model for LoS Holographic MIMO

    Full text link
    To support the extremely high spectral efficiency and energy efficiency requirements, and emerging applications of future wireless communications, holographic multiple-input multiple-output (H-MIMO) technology is envisioned as one of the most promising enablers. It can potentially bring extra degrees-of-freedom for communications and signal processing, including spatial multiplexing in line-of-sight (LoS) channels and electromagnetic (EM) field processing performed using specialized devices, to attain the fundamental limits of wireless communications. In this context, EM-domain channel modeling is critical to harvest the benefits offered by H-MIMO. Existing EM-domain channel models are built based on the tensor Green function, which require prior knowledge of the global position and/or the relative distances and directions of the transmit/receive antenna elements. Such knowledge may be difficult to acquire in real-world applications due to extensive measurements needed for obtaining this data. To overcome this limitation, we propose a transmit-receive parameter separable channel model methodology in which the EM-domain (or holographic) channel can be simply acquired from the distance/direction measured between the center-points between the transmit and receive surfaces, and the local positions between the transmit and receive elements, thus avoiding extensive global parameter measurements. Analysis and numerical results showcase the effectiveness of the proposed channel modeling approach in approximating the H-MIMO channel, and achieving the theoretical channel capacity.Comment: Double column, 6 pages, 3 figures, 1 table, accepted by 2023 IEEE Global Communications Conference (GLOBECOM 2023

    Holographic MIMO Communications with Arbitrary Surface Placements: Near-Field LoS Channel Model and Capacity Limit

    Full text link
    Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we try to implement a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of 1/dmn21/{{d}_{mn}^2}, 1/dmn41/{{d}_{mn}^4}, and 1/dmn61/{{d}_{mn}^6} over all transmit and receive antenna elements, where dmnd_{mn} indicates the distance between each transmit and receive elements. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.Comment: 30 pages, 8 figure

    Holographic MIMO Communications: Theoretical Foundations, Enabling Technologies, and Future Directions

    Full text link
    Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the concept of the holographic multiple-input multiple-output (HMIMO), which will actualize holographic radios with reasonable power consumption and fabrication cost. The HMIMO is facilitated by ultra-thin, extremely large, and nearly continuous surfaces that incorporate reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMO opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM-domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMO communications are still at an initial stage, its fundamental limits remain to be unveiled, and a certain number of critical technical challenges need to be addressed. In this survey, we present a comprehensive overview of the latest advances in the HMIMO communications paradigm, with a special focus on their physical aspects, their theoretical foundations, as well as the enabling technologies for HMIMO systems. We also compare the HMIMO with existing multi-antenna technologies, especially the massive MIMO, present various...Comment: double column, 58 page

    Hybrid Beamforming Design for Self-Interference Cancellation in Full-Duplex Millimeter-Wave MIMO Systems with Dynamic Subarrays

    No full text
    Full-duplex (FD) millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communication is a promising solution for the extremely high-throughput requirements in future cellular systems. The hybrid beamforming structure is preferable for its low hardware complexity and low power consumption with acceptable performance. In this paper, we introduce the hardware efficient dynamic subarrays to the FD mmWave MIMO systems and propose an effective hybrid beamforming design to cancel the self-interference (SI) in the considered system. First, assuming no SI, we obtain the optimal fully digital beamformers and combiners via the singular value decomposition of the uplink and downlink channels and the water-filling power allocation. Then, based on the obtained fully digital solutions, we get the dynamic analog solutions and digital solutions using the Kuhn–Munkres algorithm-aided dynamic hybrid beamforming design. Finally, we resort to the null space projection method to cancel the SI by projecting the obtained digital beamformer at the base station onto the null space of the equivalent SI channel. We further analyze the computational complexity of the proposed method. Numerical results demonstrate the superiority of the FD mmWave MIMO systems with the dynamic subarrays using the proposed method compared to the systems with the fixed subarrays and the half-duplex mmWave communications. When the number of RF chains is 6 and the signal-to-noise ratio is 10 dB, the proposed design outperforms the FD mmWave MIMO systems with fixed subarrays and the half-duplex mmWave communications, respectively, by 22.4% and 47.9% in spectral efficiency and 19.9% and 101% in energy efficiency

    Compressive Subspace Learning Based Wideband Spectrum Sensing for Multiantenna Cognitive Radio

    No full text
    Recently, sub-Nyquist sampling (SNS) based wideband spectrum sensing has emerged as a promising approach for cognitive radios. However, most of existing SNS-based approaches cannot effectively deal with the wireless channel fading due to the lack of space diversity exploitation, which would lead to poor sensing performance. To address the problem, we propose a multi-antenna system, referred to as the multiantenna generalized modulated converter (MAGMC), to realize the SNS, where spatially correlated multiple-input multiple-output (MIMO) channel is considered. Based on the multiantenna system, two compressive subspace learning (CSL) approaches (mCSL and vCSL) are proposed for signal subspace learning, where wideband sectrum sensing is realized based on the signal subspace. Both proposedCSLapproaches exploit space diversity, where the mCSL utilizes an antenna averaging temporal decomposition, and the vCSL (which is formulated based on a vectorization of sample matrix in the mCSL) uses a spatial-temporal joint decomposition. We further establish analytical relationships between eigenvalues of statistical covariance matrices in statistical sense in both multiantenna and single antenna scenarios. Space diversity and superiority over the single antenna scenario for both proposed CSL approaches are analyzed based on the derived analytical relationships. Moreover, the mCSL and vCSL based wideband spectrum sensing algorithms are proposed based on the system model of MAGMC and their computational complexities are given. The proposed CSL based wideband spectrum sensing algorithms can effectively dealwith the wireless channel fading and simulations show the improvement on performance of wideband spectrum sensing over related works

    Property Investigation on the Additive White Gaussian Noise After Sub-Nyquist Sampling

    No full text
    The sub-Nyquist sampling (SNS) has emerged as an appealing technique for wideband signal sampling and has found its applications in many areas, such as, cognitive radios, radar and medical imaging, etc.. However, existing SNS based approaches generally assume that the output noise of SNS (termed as SNS noise) is generated as the additive white Gaussian noise without considering the SNS effect. To give more insights on the noise after SNS, we propose a generalized modulated converter to represent existing prevalent SNS systems and give an analysis on statistics of the SNS noise in terms of the proposed SNS system. The noise folding factor and the uncorrelated and white keeping properties are derived and concluded from the derived statistics, in which the former is used to show the noise enhancement by SNS and the latter describes the SNS noise uncorrelation and equal power intensity in different frequencies, respectively. In the final, simulation results validate the derived results and conclusions

    Compressive Subspace Learning With Antenna Cross-Correlations for Wideband Spectrum Sensing

    No full text

    Dynamic Ti3+ and In3+ dual active sites on In2TiO5 to enhance visible-light-driven gas-phase photocatalytic CO2 reduction

    No full text
    Amorphous materials offer novel and cooperative active sites that challenge the limits of heterogeneous crystalline catalysts. This work represents an initial development of a feasible amorphous photocatalyst for CO2 photoreduction. We optimise the bandgap and crystal structure of amorphous In2TiO5 to facilitate the conversion of CO2 to CH4. The XAFS analysis identifies Ti3+ as the active site. The reaction between H2O and In3+ produces protons that lower the oxidation state of In3+ to In2+. Moreover, adding 2D nanolayers of MoSe2 to In2TiO5 increases CH4 production from 4.14 to 6.15 ”mol/g. We report the effect of multiphoton flux and find that it leads to a 1.28-fold increase in CH4 production. The combined in situ DRIFTS and DFT analyses elucidate underlying chemical pathways in photocatalytic CO2 reduction. © 2023 Elsevier B.V.FALS
    corecore